

Seminar for Industry and Building EMS

Policy and Technology for Energy Efficiency in Japan

April 26, 2016 JICA Project Team (TEPCO HD)

1. Introduction of JICA's Project

Outline

1. Donor

Japan International Cooperation Agency (JICA)

2. Consultant

TEPCO HD & YSK Consultants JV

3. Project Period

2014/3-2017/4

4. Purpose of the Project

Assistance for preparation and implementation of EMS

5. Components (JICA's Assistance Portion)

Component 1: Preparation of the scheme and dissemination

 Based on the EE&C Law issued in March 2013, the secondary legislation (detailed regulations, format, qualification system) are prepared and dissemination programs are implemented.

Component 2: Preparation and implementation of training programs

- Creation of training program for Energy Auditor (EA), training of trainers for EA, and assistance for training with exam. for EA conducted by Training Organization (TO)
- Creation of a training program using training facilities, training of trainers for training facilities for Energy Manager (EM) and assistance for training for EM conducted by TO

Component 3: Follow up after implementation of EMS

Assistance for operation of EMS and follow up

Overview of Japan

Hokkaido

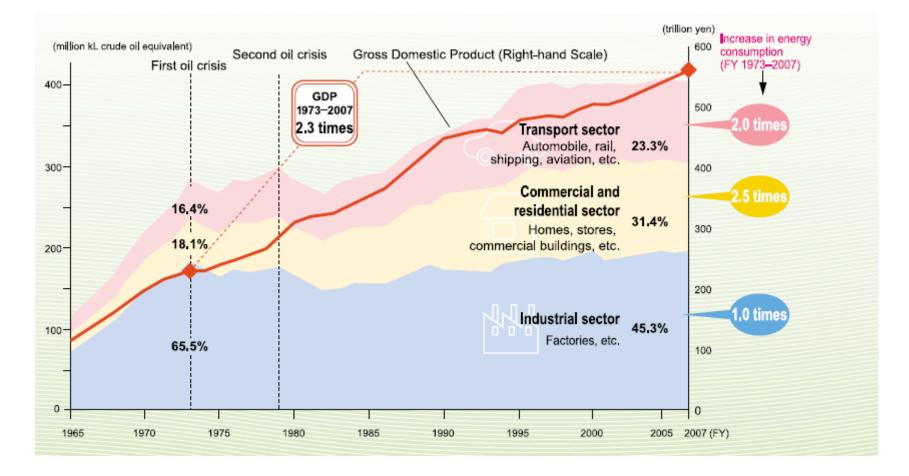
Hokuriku New "Shin-kansen" (Debut: March 14, 2015)

Kyoto

TEPCO (FY2013)			
Peak demand	64.3GW (July 2001) 50.9GW (Aug 2013)		
Service area	39,542km ²		
Demand density	1288kw/km ²		
Population in service area	45 million		
UG transmission line circuit length	12,073km		
OH transmission line circuit length	28,247km		

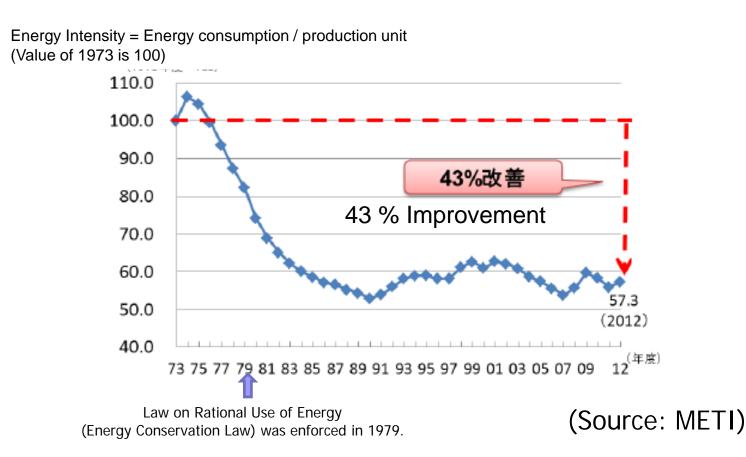
Mt. Fuji

Okinawa


Tokyo

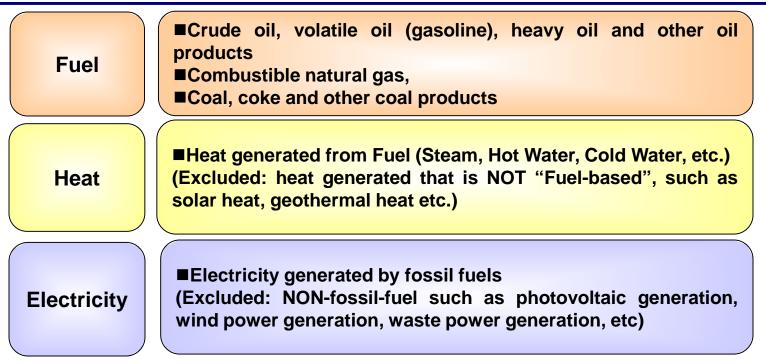
TEPCO Service Area

2. Policy for Energy Efficiency in Japan


Historical Data of Final Energy Consumption by Sector

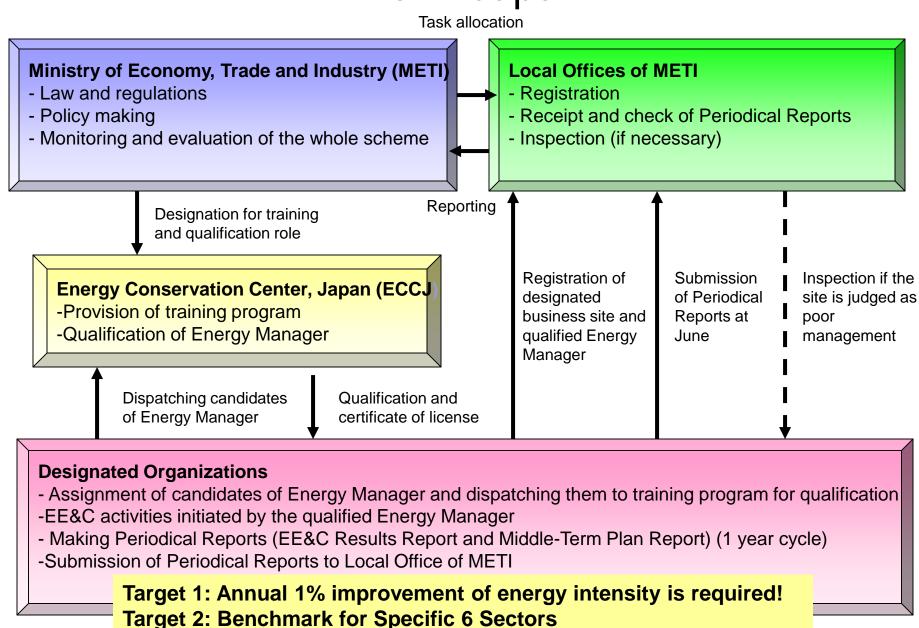
GDP has grown 2.3 times since 1973. However, energy consumption of industrial sector has been flat due to promotion of energy efficiency.

Energy Intensity of Manufacturing Sector


- Energy intensity of manufacturing sector in Japan has been improved since 1973.
- However, from 1990's, energy intensity has not been improved so much. Further improvement efforts are needed.

Law on Rational Use of Energy (Energy Conservation Law) in Japan

Targeted Energy under the Energy Conservation Law


The term "Energy" as defined in the Energy Conservation Law refers to "Fuel", "Heat" and "Electricity". Namely, target of this law is reduction of "fossil fuels"

Measures for Energy Conservation in Japan

		Industrial Sector	Commercial and Service Sector	Residential Sector	Transportation Sector
Reg ulati on	Energy Conservation Law	Systen			Regulations for transportation
	Subsidy		ation, Education	and Communicat	ion
			Grants for pu energy-efficient (EE) e	J	
Ince ntiv	Tax reduction, low interest public loan	Specia	depreciation or tax m	itigation for EE equipn	nent
е			small & medium asing EE equipment	Tax reduction for EE houses	
	Others	Awarding	scheme, Offering ener Offering infor	55 5 5	s tools,

EMS in Japan

Samples of Benchmark in Specific Sectors

Sub-sector	Target Value	Average of All the Companies (2013)	Achieved Companies (2013)
Iron business using blast furnace	0.531 kl/ton	0.588 kl/ton (3 companies)	0
Normal Steel business using electric furnace	0.143 kl/ton	0.173 kl/ton (32 companies)	5
Special steel business using electric furnace	0.36 kl/ton	0.57 kl/ton (19 companies)	5
Power generation business	100.3 % for Rated Capability	99.0 % (11 companies)	0
Cement business	3,891 MJ/ton	4,190 MJ/ton (17 companies)	5

Benchmark is adopted for 10 fields in 6 sectors (Steal, Power Generation, Cement, Paper, Oil Refinery, and Chemical). Top 10%-20% is set for the target value.

Achievement Records of Designated Organizations in Japan

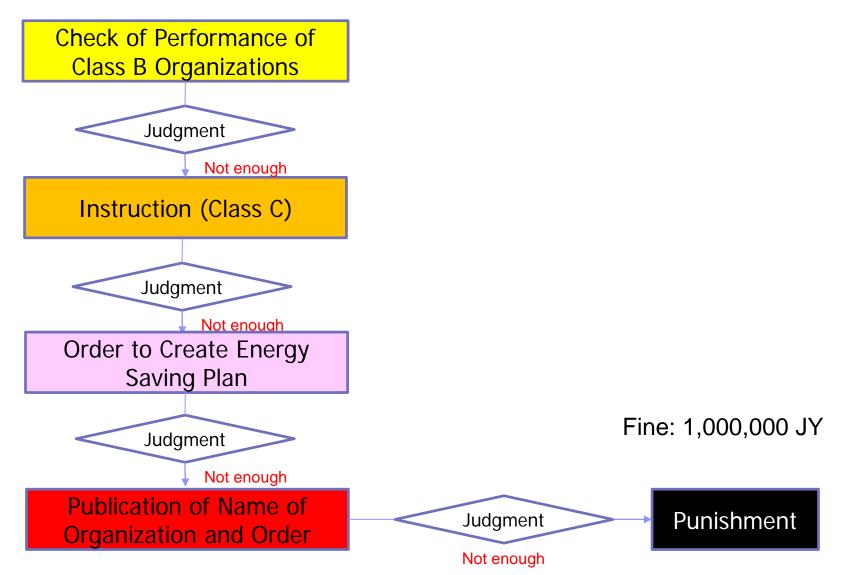
	Change of Energy Intensity /Year (5 years average)	Number of Companies
	Above 25 % Reduction	26 (0.2 %)
Improvement	20 % - 25 % Reduction	40 (0.4 %)
	15 % - 20 % Reduction	77 (0.7 %)
	10 % - 15 % Reduction	315 (3.0 %)
	5 % - 10 % Reduction	1,626 (15.3 %)
	1 % - 5 % Reduction	4,640 (43.7 %)
	0 % - 1 % Reduction	1,212 (11.4 %)
	Total	7,936 (74.7 %)

	Change of Energy Intensity /Year (5 years average)	Number of Companies
	0 % - 5 % Increase	2,262 (21.3 %)
	5 % - 10 % Increase	291 (2.7 %)
	10 % - 15 % Increase	68 (0.6 %)
	15 % - 20 % Increase	29 (0.3 %)
Deterioration	Above 25 % Increase	34 (0.3 %)
	Total	2,684 (25.3 %)

* Data from the Periodical Reports in 2013

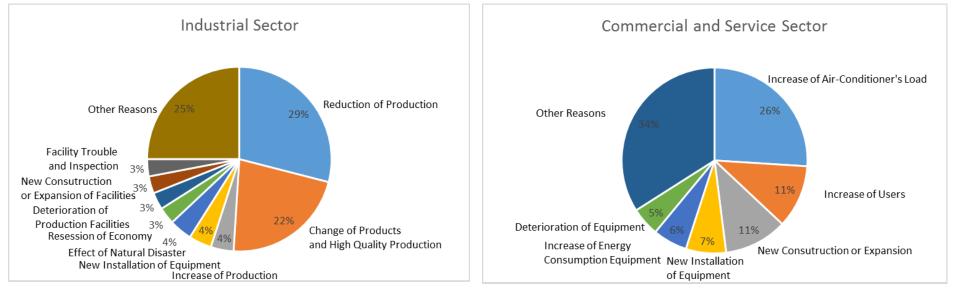
12

Evaluation of Designated Organizations


 Based on the submitted Periodical Reports, all the organizations are categorized into 4 classes and METI takes actions by class.

Class S Good Performers 6,734 Organizations (54.6 %)	Class A Normal Performers 4,240 Organizations (34.4 %)	Class B Non-Achieved Performers 1,364 Organizations (11.1 %)	Class C No Good Performers
(Standard) (1) Achievement of Energy Intensity Target or (2) Achievement of Benchmark Target (METI's Actions) METI publishes the name of organizations as good performers	(Standard) Organizations which are not categorized into Class S, Class B nor Class C. (METI's Actions) No action is taken.	 (Standard) (1) Not achievement of Energy Intensity Target and increase the Energy Intensity in 2 consecutive years or (2) More than 5 % increase of Energy Intensity in 5 years average (METI's Actions) METI sends a letter to the organization and visit the site to check. 	 (Standard) (1) Organizations of Class B and (2) Not compliance with judgment criteria (METI's Actions) METI gives an instruction based on the law.

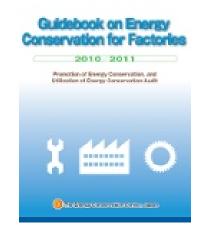
* Data from the Periodical Reports in 2013

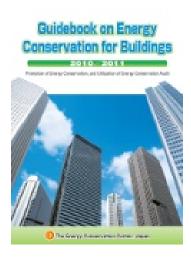

(Source: METI)

METI's Actions for Class C

Reasons why Organizations did not Achieve the Target of 1 % Improvement of Energy Intensity

- Organizations which does not achieve the target of 1 % improvement of Energy Intensity have to describe reasons in Periodical Report.
- For the Industrial Sector, reduction of production and change of products and high quality production are major reasons.
- For the Commercial and Service Sector, increase of air-conditioner's load, increase of users and new construction and expansion are major reasons.

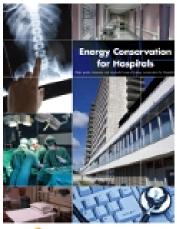

446 Samples in 2014


* Multiple answer is possible

217 Samples in 2014

(Source: METI)

Brochures for Energy Conservation



😕 The Energy Conservation Denter, Japan

http://www.asiaeec-col.eccj.or.jp/brochure/index.html

3. Japanese Technology for Energy Efficiency

Ultra Super Critical Coal Power Generation

Effect

- Improvement of thermal efficiency (43% HHV)
- Reduction of CO² emission

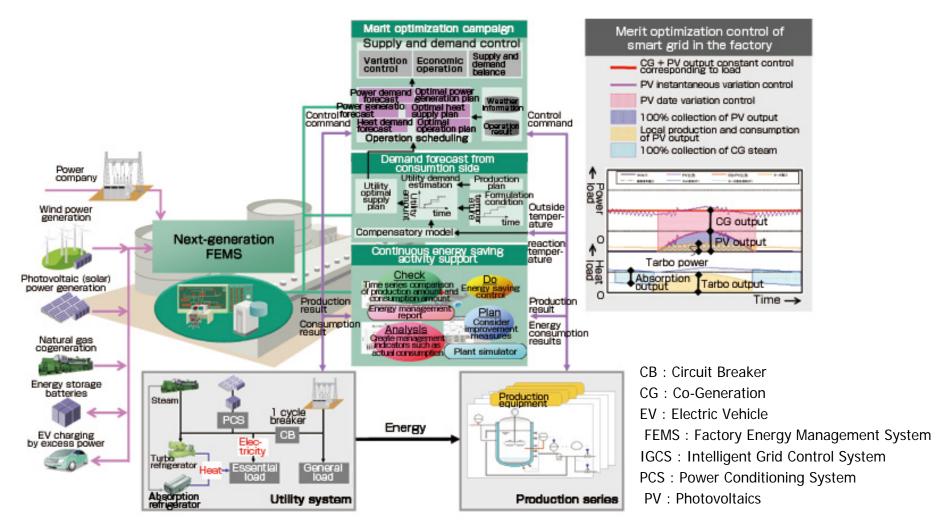
		Turbine/			
	Boiler	Generator	Capacity		First
Location	Contractor	Contractor	(MW x unit)	Construction	operation
Hitachinaka #1	BHK	HTC	1000 x 1	12/1998 - 12/2003	12/2003
Hirono #5	MHI	MHI/ME	600 x 1	7/2000 - 7/2004	7/2004

Specification		Main steam Temp (°C)		Efficiency (%, HHV)	Fuel
Hitachinaka #1	24.5	600	600	43.1	Coal
Hirono #5	24.5	600	600	43.0	Coal

TEPCO Hitachinaka Power Station

<General Feature>

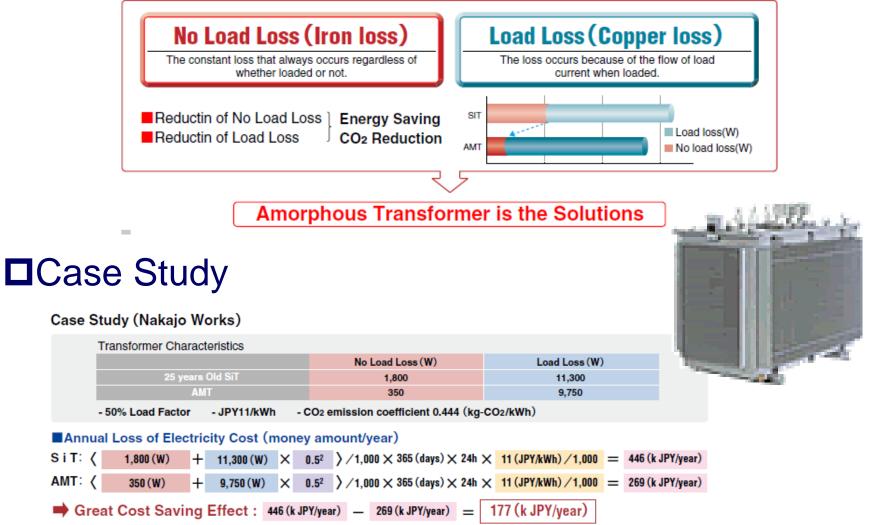
- Construction Cost: Approximately 1,400 US\$/kW including environmental facilities (excluding port facilities and land acquisition)
- Scale of Unit: 500 MW-1,000 MW per Unit
- Water Content: Less than 30%
- Coal Type: Better than Sub-bituminous
- Ash Melting Point: More than 1,200 C
- Ash Content: Less than 10%


More Advanced Combined Cycle (1,500°C-class Gas Combined Cycle Power Generation)

Effects

- Improvement of thermal efficiency (59% LHV)
- Reduction of CO² emission

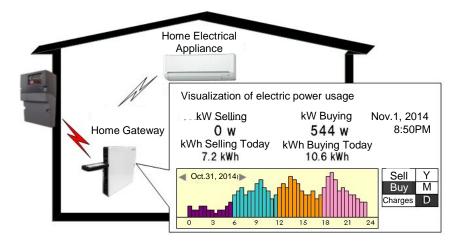
 Gas turbine 		
Model:	Open cycle single-shaft type	
Output:	Approx. 330 thousand kW	
	(air temperature of 5°C)	
Inlet gas temperature:	Approx. 1,500°C	
Pressure ratio:	Approx. 21	TEPCO Kawasaki Power Station
Combustor:	Premixed combustion type	
Fuel used:	Re-gasified LNG	
 Steam turbine 		STATISTICS AND
Model:	Three-pressure reheated double-flow	
	exhaust condensation type	
Output:	Approx. 170 thousand kW (air temperature	
	of 5°C)	
Steam pressure:	High pressure Approx. 13 MPa	Can a start a st
	Medium pressure Approx. 3 MPa	
	Low pressure Approx. 0.4 MPa	
Steam temperature:	High pressure Approx. 560°C	
	Medium pressure Approx. 570°C	
	Low pressure Approx. 270°C	


Factory Energy Management System

(Source: HITACHI)

Amorphous Core Transformer

□ About the loss of transformers


(Source: Hitachi Industrial Equipment Systems)

Smart Meter (2 way communication power meter)

Deployment of Smart meters

- By FY 2020, TEPCO will install 27 million smart meters throughout its entire customer area
- Early realization of new rate menu and lifestyleenhancing services
- Early realization of management rationalization, such as automatic metering, elimination of field visits and reduction of investment via demand response, etc.

Advanced services using meter data

- Smart meter transmits metering data to HEMS at customer's home
- Efficient energy savings using HEMS, which reads the amount of electricity and current every 30 minutes

Hvala

